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1. Module context
While designing a training course, the relationship between this module and the others,
would be maintained by keeping them close together in the syllabus and place them in a
logical sequence. The actual selection of the topics and the depth of training would, of
course, depend on the training needs of the participants, i.e. their knowledge level and skills
performance upon the start of the course.
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2. Module profile

Title : Correlation and Spectral Analysis

Target group : HIS function(s): ……

Duration : x session of y min

Objectives : After the training the participants will be able to:

Key concepts : • 

Training methods : Lecture, exercises

Training tools
required

: Board, flipchart

Handouts : As provided in this module

Further reading
and references

:
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3. Session plan

No Activities Time Tools
1 Preparations
2 Introduction: min OHS x

Exercise min
Wrap up min
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4. Overhead/flipchart master
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5. Handout
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Add copy of the main text in chapter 7, for all participants
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6. Additional handout
These handouts are distributed during delivery and contain test questions, answers to
questions, special worksheets, optional information, and other matters you would not like to
be seen in the regular handouts.

It is a good practice to pre-punch these additional handouts, so the participants can easily
insert them in the main handout folder.
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7. Main text
Contents

1 Introduction 1

2 Autocovariance and Autocorrelation
function 1

3 Cross-Covariance and Cross-Correlation
function 5

4 Various Spectrum and Spectral Density
Function 6
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Correlation and Spectral Analysis

1 Introduction
In this module three tools will be discussed which are used to investigate the correlation
structure of time series and to identify the major harmonic components available in the time
series:

1. Autocovariance and autocorrelation function
2. Crosscovariance and crosscorrelation function, and
3. Variance spectrum and spectral density function.

The estimation procedures are presented with applications.

2 Autocovariance and Autocorrelation function
The autocovariance function of a series Y(t) is defined as:

γYY(k) = Cov[Y(t), Y(t+k)} = E[(Y(t) – µY)(Y(t+k) – µY)]  (1)

where: γYY(k) = covariance at lag k
µY = mean of series Y

The covariance at lag 0 is the variance of Y:

γYY(0) =  σY
2  (2)

To make covariance functions of different processes with different variances comparable the
autocovariance is scaled by the covariance at lag 0, i.e. variance. The resulting function is
called the autocorrelation function ρYY(k) and its graphical presentation is generally known as
the autocorrelogram:

ρYY(k) = γYY(k))/ γYY(0) with –1≤ ρYY(k) ≤ 1  (3)

For a random series, i.e. when no serial correlation is present: ρYY(k) = 0 for |k| > 0.

In HYMOS the autocovariance function γYY(k) is estimated by the following estimator CYY(k):

     (4)

and the autocorrelation function ρYY(k) by rYY(k):

 (5)

Note that the estimators (4) and (5) are biased estimators, since the sum is divided by n
rather than by (n-k-1) to obtain estimates with a smaller mean square error.

The 95% confidence limits for zero correlation are according to Siddiqui (see e.g. Yevjevich,
1972):
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 (6)

Note that the confidence limits are not symmetrical about zero. The confidence region
expands slightly with increasing lag k. Now, if the serial correlation for a particular lag k falls
within the confidence limits, then for that lag the correlation is not significant.

Example 1
In Example 1 the autocovariance and autocorrelation function is computed for monthly
rainfall series of station PATAS, shown in Figure 1.

Figure 1: Monthly rainfall station PATAS, period 1979-1989

The results of the computation of the autocovariance and autocorrelation function are
presented in Table 1. The autocorrelogram is shown in Figure 1.

Figure 2: Autocorrelogram of monthly rainfall of station PATAS, period 1970-1989
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 Series = PATAS       MPS
 Date of first element             = 1970  1  0  0  1
 Date of last  element             = 1990  1  0  0  1

 Confidence interval               = 95%

 COV    = autocovariance function
 COR    = autocorrelation function
 CLP    = upper conf. limit zero correlation
 CLN    = lower conf. limit zero correlation
       LAG         COV       COR       CLP       CLN
         0   .3319E+04    1.0000     .1211    -.1294
         1   .5779E+03     .1741     .1213    -.1296
         2   .4315E+03     .1300     .1216    -.1299
         3   .7955E+02     .0240     .1218    -.1302
         4  -.3789E+03    -.1142     .1221    -.1305
         5  -.7431E+03    -.2239     .1223    -.1308
         6  -.7814E+03    -.2354     .1226    -.1310
         7  -.7383E+03    -.2224     .1228    -.1313
         8  -.1996E+03    -.0601     .1231    -.1316
         9   .2174E+03     .0655     .1233    -.1319
        10   .3428E+03     .1033     .1236    -.1322
        11   .1119E+04     .3371     .1238    -.1325
        12   .1254E+04     .3779     .1241    -.1328
        13   .6556E+03     .1975     .1243    -.1331
        14   .1103E+03     .0332     .1246    -.1334
        15   .2240E+03     .0675     .1248    -.1337
        16  -.3054E+03    -.0920     .1251    -.1340
        17  -.7494E+03    -.2258     .1254    -.1343
        18  -.7914E+03    -.2385     .1256    -.1346
        19  -.7762E+03    -.2339     .1259    -.1349
        20  -.2796E+03    -.0842     .1262    -.1352
        21   .3819E+03     .1151     .1264    -.1355
        22   .3259E+03     .0982     .1267    -.1358
        23   .7051E+03     .2125     .1270    -.1361
        24   .1203E+04     .3624     .1273    -.1364 etc.

Table 1: Results of autocovariance and autocorrelation
computation for station PATAS

From the figure and table it is observed that there is a periodicity with a period of 12 months
due to the fixed occurrence of the rainfall each year in the monsoon. Any other periodicity is
not apparent from the autocorrelogram. Note that the serial correlation between successive
months is fairly non-existing.

The autocorrelogram for the daily series of the same station is shown in Figure 3. It is
observed that there is a fast decaying correlation between rainfall on successive days. Also
observe that the confidence limits for zero correlation are in this case closer to zero than for
the monthly series in view of the much larger amount of data taken into the analysis (6 years
of daily data).
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Figure 3: Autocorrelogram of daily rainfall at station PATAS (data 1990-1995)

For daily water level or discharge series the autocorrelogram will look quite different as the
basin acts as a filter to the rainfall input. Then the autocorrelogram will decay much slower.

The autocorrelogram is often used to identify which time series model would be suitable to
simulate the behaviour of the series. The autoregressive and moving average models do
have distinct correlograms. Reference is made to textbooks on Stochastic Processes for an
overview.
As an example consider a time series Y(t) of a single harmonic component, see also Figure
4:

      (7)

where: A = amplitude
ω = angular frequency in radians per unit of time
f  = ordinary frequency in cycles or harmonic periods per unit of time
ϕ =phase angle with respect to time origin or phase shift
T = period of harmonic

The covariance of a single harmonic process is derived from:

 (8)

The covariance function is shown in Figure 5 together with the autocorrelation function.
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Figure 4:
Series of a single
harmonic

Figure 5:
Covariance and
autocorrelogram of single
harmonic

Hence, it is observed that:

• the covariance of a harmonic remains a harmonic of the same frequency f, so the
frequency information in the original series is preserved in the covariance function and
the auto-correlation function.

• information about the phase shift has vanished in the covariance and correlation
function.

• The amplitude of the periodic covariance function is seen to be equal to the variance of
Y(t), see Figure 5.

3 Cross-Covariance and Cross-Correlation function
Similar to the way the autocovariance function of a series Y(t) was defined one can define a
measure for the covariance/correlation between the elements of two series X(t) and Y(t) at
times t and t+k:
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γXY(k) = Cov[X(t), Y(t+k)} = E[(X(t) – µX)(Y(t+k) – µY)]  (9)

where: γXY(k) = cross-covariance at lag k
µX = mean of series X
µY = mean of series Y

The cross-correlation function is obtained by dividing the cross-covariance by the standard
deviations of  X and Y respectively σX and σY. The graphical presentation is generally known
as the cross-correlogram:

ρXY(k) = γXY(k))/σX
 σY with:  –1≤ ρXY(k) ≤ 1            (10)

Now it is observed that for lag zero the cross-correlation is generally < 1, unless there is
perfect correlation between X and Y at lag zero. The maximum  may occur at some other
lag, where the linear correlation between X and Y is maximum.

For example consider the hourly water level series at two stations along the same river as
was shown in Module 23 (secondary validation of water level data). Dependent on the
distance between the two stations and the flood wave celerity the hydrograph of the
upstream station should be shifted forward in time to create the best resemblance with the
hydrograph at the downstream site. Likely the cross-correlation will be maximum at a lag
equal to the travel time of the flood wave between these two stations.

In HYMOS the cross-covariance function γXY(k) is estimated by the following estimator
CXY(k):

           (11)

and the cross-correlation function ρXY(k) by rXY(k):

           (12)

Note that the estimators (11) and (12) are biased estimators, since the sum is divided by n
rather than by (n-k-1) to obtain estimates with a smaller mean square error.

4 Variance Spectrum and Spectral Density Function
The plot of the variance of the harmonics a series can be thought of to consist of against
their frequencies is called power or variance spectrum. Generally, a large number of
harmonics is required to describe a process. Let Sp(f) be the ordinate of the continuous
spectrum, then the variance contributed by all frequencies in the frequency interval df is
given by Sp(f).df. Hence the total variance is obtained by integration over the full range of
frequencies:

           (13)

Since hydrological processes are frequency limited, i.e. harmonics with a frequency higher
than some limiting frequency fc do not contribute significantly to the variance of the process
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and can hence be eliminated. Then, approximately the following adaptation of (13) is
assumed to be valid

           (14)

where fc is called the Nyquist or cut-off frequency.

Generally, the spectrum is scaled by the variance (like the covariance function) to make
spectra of processes with different scales comparable. It then follows:

           (15)

where: Sd(f) = spectral density function

The spectral density function is the Fourier transform of the auto-correlation function and can
be computed from:

           (16)

To arrive at an estimate for the spectrum, first, ρYY(k) is to be replaced by its sample
estimate rYY(k), with k = 1,2,..,M, where M = maximum lag up to which the correlation
function is estimated. It will be shown that M is to be carefully selected.

Estimating Sd(f) by just replacing the auto-correlation function by its sample estimate creates
a spectral estimate which has a large sampling variance. To reduce this variance a
smoothing function is to be applied. With this smoothing function the spectral density at
frequency fk is estimated as a weighted average of the spectral density at surrounding
frequencies e.g. fk-1, fk and fk+1. This smoothing function is called a spectral window, which
dimension has to be carefully designed. An appropriate window for hydrological time series
is the Tukey window, which has the following form in the time domain:

           (17)

The Tukey window has a bandwidth B (indicative for the width over which smoothing takes
place in the spectrum) and associated number of degrees of freedom n of:

           (18)

The smoothed spectral estimate then reads:

           (19)

where: s(f)     = smoothed estimator for Sd(f)

It is often mentioned that the spectrum is to be computed for the following frequencies (Haan
(1977):
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Jenkins and Watts (1968) argue that the spacing following from (20) is too wide and suggest
that a number of frequency points equal to 2 to 3 times (M+1) is more appropriate.

A (1-α)100% confidence interval for Sd(f) is obtained from:

           (21)

In Figure (6) the 95% confidence limits are shown for s(f) = 2. From Figure 6 it is observed,
that the variance of the spectral estimate reduces with increasing number of degrees of
freedom, i.e. according to (18) with decreasing number of lags M in the computation of the
auto-correlation function.

Figure 6:
95% confidence limits for
white noise

Hence, to reduce the sampling variance the maximum lag M should be taken small. From
Figure 6 it is observed that for say n > 25 the sampling variance reduces only slowly, so little
further improvement in the estimate is obtained beyond that point. Consequently, a value for
M of about 10 to 15% of N will do in line with (18). But a small value of M leads, according to
(18), to a large bandwidth B. The value of B should be smaller than the frequency difference
between two successive significant harmonics in the spectrum. Say a water level is sampled
at hourly intervals, hence ∆t = 1 hour. One expects significant harmonics with periods of 16
and 24 hours. The frequency difference between the two is 1/16 - 1/24 = 1/48. Hence, it is
requested that: B < 1/48, so the condition for M becomes: M > 4x48/3 = 64. If one chooses
M to be 10% of N then at least 640 data points should be available for the analysis, i.e. some
27 days or about one month of hourly data. When a series of given length N is available, it
follows for the range of acceptable values of M: 4/(3B) < M ≤ 8N/(3n) where one should not
be too close to the lower level, and an acceptable value n ≈ 25. It is to be noted though that
since it is not known in advance which harmonics will be significant, that this process is
repeated for different values of M.

To investigate which harmonics are significant its variance should be outside the confidence
limits for white noise. A white noise process means a random process without any
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correlation between successive data points. According to (16) with ρYY(k) = 0 for k > 0 it
follows that  Sd(f) = 2 for 0 ≤ f ≤ ½  The confidence limits for a white noise spectrum are
obtained from (21) by substituting for s(f) the average spectral density estimated for 0 ≤ f ≤
½. This average should be ≈ 2. The 95% confidence levels are shown in Figure 6.

Example 2
The monthly rainfall data series of station PATAS have also been subjected to spectral
analysis. The results are shown in Figure 7 and Table 2

Figure 7: Spectral density function for PATAS monthly rainfall data

 Series     =PATAS       MPS
 Date of first element             = 1970  1  0  0  1
 Date of last  element             = 1989 12  0  0  1

 Truncation lag                =    72
 Number of frequency points    =    72

 Bandwith                      =     .0185
 Degr.frdom                    =     8

 upper conf. limit white noise =     .9125
 lower conf. limit white noise =    7.3402

 ASPEC      = variance spectrum
 LOG SPEC   = logarithm of ASPEC
 DSPEC      = spectral density

spectral density upper conf. limit white noise lower conf. limit white noise

frequency (cycles per month)
0.50.480.460.440.420.40.380.360.340.320.30.280.260.240.220.20.180.160.140.120.10.080.060.040.020

s
p

e
ct

ra
l d

e
n

si
ty

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0



HP Training Module File: “ 44 How to carryout correlation and spectral analysis.doc” Version Feb. 02 Page 10

        NR FREQUENCY       ASPEC   LOGSPEC     DSPEC
         0     .0000   .8379E+04    3.9232    2.5174
         1     .0069   .9706E+04    3.9870    2.9162
         2     .0139   .8942E+04    3.9514    2.6866
         3     .0208   .4188E+04    3.6220    1.2583
         4     .0278   .1125E+04    3.0511     .3380
         5     .0347   .1776E+04    3.2495     .5337
         6     .0417   .3632E+04    3.5601    1.0912
         7     .0486   .3158E+04    3.4993     .9487
         8     .0556   .1659E+04    3.2199     .4984
         9     .0625   .1861E+04    3.2698     .5592
        10     .0694   .4128E+04    3.6157    1.2401
        11     .0764   .3419E+05    4.5339   10.2732
        12     .0833   .6287E+05    4.7985   18.8906
        13     .0903   .3767E+05    4.5759   11.3166
        14     .0972   .1104E+05    4.0430    3.3173
        15     .1042   .7031E+04    3.8470    2.1124
        16     .1111   .2293E+04    3.3604     .6890
        17     .1181   .2650E+04    3.4233     .7962
        18     .1250   .5415E+04    3.7336    1.6269
        19     .1319   .4855E+04    3.6862    1.4587
        20     .1389   .2575E+04    3.4108     .7737 etc.

Table 2: Results of spectral analysis of monthly rainfall data for station PATAS

From figure and table it is observed that maximum variance is available for f = 0.0833 = 1/12
cycles per month. It confirms the observation made in Chapter 2 from the autocorrelogram
that a strong annual cycle is present in the series.

Nyquist or cut-off frequency

When the spectrum is made for measurements taken at small intervals ∆t, and if no
significant harmonics are available for f in the interval fc < f ≤ 1/2∆t, it follows that a larger
sampling interval may be applied without loss of information. Note that for a harmonic
component with period T the sampling interval ∆t should be < 1/2T to be able to detect the
harmonic (more than two samples per period). Hence, it follows that when a hydrological
process has a cut-off frequency fc, this implies that harmonics with a period T < Tc = 1/fc do
not contribute significantly to the series variance. By sampling this process at intervals ∆t <
1/2Tc = 1/(2fc) apart will not lead to loss of information. So, the sampling interval ∆t should
fulfil the criterion:

to ensure full reproduction at all characteristics of the process. A much smaller sampling
interval will lead to redundancy.

cf2

1
t <∆
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